

Transformers Networks for the Schrödinger Equation

Roberto Flórez Ablan¹, João Augusto Sobral, Mathias S. Scheurer

¹rflorezablan@gmail.com

Motivation

• Transformers are a very sucessfull deep learning technique, especially in problems of stochastic nature. Quantum mechanical systems have this characteristic. Here we use them to study dynamics governed by the Schrödinger Equation.

¹Vaswani et al., 2017; ²Lin et al., 2021

Transformer Archictecture

- A decoder-only transformer minimizes the loss function for next possible token.
- An input token is embedded in a n_{Emb} vector and the position information is included in a positional embedding, as attention is permutation equivariant.
- An implementation based on ³ was used in this work.

³Karpathy Andrej, 2022, NanoGPT, Github Repository.

Transformer Generation

• As an initial benchmark of the implementation, we trained a model with $n_{Heads} = n_{Lavers} = 4$ and n_{Emb} = 64, on a set of 20 Bossa Nova Songs.

structure in terms of paragraphs, sentences and authors.

• GPT understands Bossa Nova's

• The lyrics are gibberish and with many portuguese gramatical mistakes.

English human translation

Dynamics of a free quantum particle

- In a quantum mechanical system:
- The position of a particle is not uniquely determined. It is described by a wavefunction $\psi(x,t)$. The probability density of measuring a particle at position at time t is given by $|\psi(x,t)|$.
- The evolution of $\psi(x,t)$ follows the Schrödinger equation: $i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial}{\partial x^2} + V(x,t) \right] \psi(x,t)$
- We implemented the time evolution of a free gaussian particle with periodic boundary conditions.

Trajectories dataset

- *P* different $|\psi(x,t)|^2$ were simulated with random pairs of x_0 , p_0 .
- *K* particle trajectories were sampled for each $|\psi(x,t)|^2$.
- Space and time were discretized in L(T) spacesteps (timesteps). Each spacestep corresponds to a token. Each token position in a sentence corresponds to a time step. The transformer was trained with 6×10^7 tokens, from P=11000 distributions and K=200 trajectories.

Results: generating trajectories

- Ensembles of trajectories were generated with 3 "prompting" methods:
- Method 1:
 - st Randomly sampled positions $x_{rs_{t_i}}$ for the first c_S time steps. Transformer autocompletes trajectories and generates a new one. A histogram is built with the new trajectories.

Sampled

- Method 2:
- st Most frequent positions $\mathscr{X}_{\mathrm{mf}}$ for the first c_S time steps. Transformer autocompletes trajectories. A histogram is built from autocompleted trajectories.

- Method 3:
 - * Initial momentum and position were included in the dataset and given as prompt.

• The resemblance between a transformer generated probability distribution and the exact probability distribution can be quantified with the Kullback-Leibler (KL) divergence.

$$KL(P||Q) = \sum_i P_i \log \frac{P_i}{Q_i}$$

Method 3 - KL(Sampled, Exact)200 5 ^{C}S 10 100 Number of trajectories

Conclusions

- Transformers are able to partially reproduce distributions from quantum mechanics.
- Explicit information of initial momentum and position seems to be more powerful than context about trajectory positions. More simulations are necessary to understand the best prompting method.
- This proof of concept, is a first step to address harder problems in quantum mechanics, using the transformer architecture.