Collective effects in biphoton generation of a four-wave-mixing (FWM) process

FAPESP

Roberto Flórez Ablan¹, André Cidrim, Alan C. Santos and Romain Bachelard ¹ rflorezablan@gmail.com Federal University of São Carlos

Motivation

Biphotons can be generated using FWM.
Biphotons are very important for quantum technologies:

Exact simulations

• We obtain stronger correlations in opposite directions as expected in FWM (for 5 particles in the atomic cloud).

Subspace simulations

• Subspace approximations reproduce exact calculations.

Objective

• Identify and characterize collective effects in FWM, considering N two-level atoms interacting through coupled dipoles interaction.

Methodology and Model

• Numerically solved an exact model (N < 7):

• The method allows us to simulate systems with many atoms.

- In just a few hours the subspace approximation equations and $g^{(2)}(\tau = 0)$ can be calculated.
- For N = 40, we find again that $g^{(2)}(\tau = 0)$ is stronger for opposite directions.

210

Conclusion

Considering dipole-dipole interactions in FWM in TLS we obtained results qualitatively consistent with recent experimental measurements, but further characterizations with larger clouds are necessary to fully characterize the collective effects.

Acknowledgements

This research was supported by the FAPESP project 2021/04564-2.